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EMPIRICAL EQUATION FOR THE FUNDAMENTAL 
NATURAL PERIOD 

by 

Masaaki Suko
a 
 and Peter F. Adams 

 

SYNOPSIS 

An empirical method has been developed to predict the fundamental 
natural period of a multistory, multibay frame. Here it is first 
required to calculate the average values of beam stiffness, column 
stiffness, story height and the mass per story. Then by reading a 
value from the chart, which is good for all types of structure, the 
natural period can be determined with greatly improved accuracy over 
the conventional formulae. Rationale of this method is also discussed, 
followed by example calculations on both regular and irregular types 
of structure. 

INTRODUCTION 

The natural period in the fundamental mode is one of the most 
important structural parameters which will describe the dynamic 
characteristics of a frame. The exact value of the fundamental natural 
period of an analytical frame can be evaluated if the equations of 
motion are constrycted, by employing, most conveniently, one of the 
iterative methods(9), with the aid of a computer. 

In a practical design, however, a so called, rigorous analysis 
is often time consuming and an empirical formula is preferred to. For 
this purpose a number of such formulae have been proposed (2, 4, 7, 8, 
10, 11, 12, 13, 15, 16, 17); some of them are adopted in the building 
codes(8, 12, 17) or recommended to use by the authorities (11). However, 
the estimates given by any of these empirical formulae,Dove been rather 
crude, resulting in some cases in more than 100% errork4). 

In this paper, an improved method to predict the fundamental 
natural period of a multistory, multibay frame is proposed. Then, a 
discussion to explain the construction of the proposed formula will be 
given. A consideration for irregular types of frames will also be 
presented. The last portion of the paper demonstrates the use of the 
present method and the comparison of values obtained from the present 
method with the true values of the natural period. 

PROPOSED EMPIRICAL FORMULA FOR THE 
FUNDAMENTAL NATURAL PERIOD 

The most practical way of setting up an analytical model of 
an actual frame is by its skeltons with masses concentrated at floor 
levels. The number of stories, N„ and the number of bays, Nh, as 
well as the height of each story dnd the length of each bay iff the 
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model correspond to those of the original frame (member length will 
be denoted by L in the subsequent discussions). The members in the 
model are assumed to be massless but have the same stiffness (E: elastic 
modulus; and I: moment of inertia) as those of the actual frame. The 
masses, m1, are concentrated at the floor level and can only sway 
horizontally. The base of the bottom story columns are fixed to the 
foundation. 

An empirical equation for the calculation of the fundamental 
natural period, T1  (sec), of a regular type of frame is proposed as: 

Ti  =T0
a h g • i- Ns -1-6 

where T0:the value read from the chart given in Fig. la or lb 
depending upon the value of y, where 

y = Kb/Kc. --- (2) 

In the above, Kb  is the average stiffness of 
beams, i.e., 

Kb - for all beams b 
/N

s
N
b

--- (3) , EI 

where (EI/L)k  is the stiffness of an individual beam; 
and K

c 
is th4 averaae stiffness of columns; i.e., 

Kc  = EI 
for all columns (L) N

s 
 (N

b 
 + 1) --- (4) 

c   

where (EI/L)c  is the stiffness of an individual column, 

h: the ratio of the average story height to a standard 
height of 12 feet = 144 inches (366 cm); i.e. 

h = H/144Ns --- (5) 

in which, H is the overall height (in inches) of the 
structure. 

a: the ratio of the average stiffness of columns, K 
to a standard value of stiffness of 0.500X106  
kip-in (.575 x 106  ton cm); i.e. 

a = 2Kc/10
6 

and 

8: the ratio of the average mass per story per column, 
m, to a standard value of mass of 70/g kip-sec2/in 
(31.7/g ton sec4/cm) adjusted by the number of bays; 
i.e. 

8 = mg . 
N
b 
+ 0
'
4 

70 N
b 

in which, g is the accelerati2n of gravity 
( =386 in/sec2  or 980 cm/sec ). 

--- (7) 

--- (1) 



( Average story height  of the old frame 2 ) = a  
Average story height of the new frame 

--- ( 9 ) 
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EXPLANATION OF THE PRESENT FORMULA 

The present method to predict the fundamental natural period is 
an empirical method, and it is not possible to verify its validity 
in a rigorous manner. However, the following explanation may help to 
understand the construction of the present formula. 

The governing equation of the natural period, T, of the system 
described above is written in the following manner. 

[G] 1)0 = (2 T )2  [M] ix} --- (8) 

where [G] is the frame stiffness matrix, [M] is the mass matrix and 
{x} is the floor level lateral translation vector. 

The values of T
0  in Fig la or lb were obtained as the fundamental 

natural periods of a series of standard 10-story, 2-bay frames by solving 
Eq. 8 in a rigorous manner. In these standard frames, the mass 
distribution (average mass per story per column is 58.3/g kip sect/in, 
or 26.4/g ton sect/cm), the distribution of column stiffnesses (average 
value of EI/L is .500 x 106  kip in, or .575 x 106  ton cm), and the story 
heights (average height is 144 in., or 366 cm) were kept constant and 
only the beam stiffnesses were varied. Thus the chart is made for To  
against y where y is the ratio of the average beam stiffness to the 
average column stiffness as defined in Eq. 2. 

The effect of the distribution of column stiffnesses on the 
fundamental natural period was found minor. That is, if other variables 
are kept constant, the fundamental natural period of a frame is almost 
the same regardless of the stiffness distribution of columns (within a 
practical range) as far as its average stiffness is kept the same. 
Similarly the effect of the distribution of beam stiffnesses on the 
fundamental natural period was minor, so as the distribution of masses 
as far as their average values were kept constant. Therefore, these 
factors are ignored in the present equation. 

An element of the structural stiffness matrix [G] has a value 
expressed in a form, E p(EI/L). Here, p is a nondimensionalized 
quantity and is a function of (I/L)b/(EI/L)c, where (EI/L)b and (EI/L)c  
are stiffnesses of appropriate beam and column members, respectivelv; 
and (EI/L3)

c 
 are the quantities, EI/L3, with respect to column members. 

Thus if the quantities of EI/L of all column and beam members are 
increased or decreased proportionally to the original values with almost 
the same ratio, say a times the original values on the average, the new 
stiffness matrix would approximately be expressed as a[G], where, since 
the quantities p would remain the same, 

Avera e value of (EI/L3) of the new frame 
Average value of EI/L c  of the old frame a= 

The equations describing the natural period of the new frame can now be 
written as: 

Lr 
 )2 [M] 

1x1 

 

T 
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This indicates that the natural period of the new frame, T1 , is 1/115 
times that of the original frame, T. If T

O 
 is assumed to be the 

value obtained from the chart given in Fig. la or lb entering y which 
is calculated on the new frame, the quantity a in Eq. 9 is now expressed 
as : 

a•=• h
2

--- (11) 

where a and h as defined in Eq. 6 and 5, respectively. Thus, 

T1  = TO/ = Tohilra 

On the other hand, if all masses are increased or decreased 
proportionally to the original values with approximately the same ratio, 
say b times the original value on the average, the equations for the 
natural period of the new frame can be written as 

[G] x (4)2  b [M] x} --- (13) 

Thus the natural period of the new frame, T1, will be approximately \T 
times that of the original frame, T. If TO  is obtained from the chart 
in Fig. la or lb, b may be calculatk as: 

b = Average mass per story of the new frame . m ---(14) 
Average mass per story of the old frame 58.3 

where m is the average mass per story per column of the new frame.Thus, 

T
1 T

0 
)5 --- (15) 

Further it was observed that even if the values of the mass per story 
per column are the same in two frames of the different numbers of bays, 
the less the number of bays, the longer the natural period. It was  found 
that the natural period is almost proportional to 7 4/(N

b 
 + 0.4)/N

b 
when 

other parameters are kept constant. Combining the preceding two effects, 
new quantity, 6., was defined as: 

R =  70 '
N
b 
+ 0
'
4

--- (16) 
N
b 

This definition was selected so that 6 becomes equal to 1.0 when m  _ 58.3 

kip sec
2
/1n and Nk  = 2 as in the standard frames. When the definition of 

Eq. 16 is used, the standard value of mass per story per column may be 
regarded as 70/g kip sec2/in. Eq. 15 is now replaced by the next equation. 

T
1 

= T
0 
 ,rT --- (17) 

If, both the structural stiffnesses and mass distribution are varied, 
the fundamental natural period of the new frame (of any number of bays) will 
be obtained, by superposing Eqs. 12 and 17 as: 

T
1 
=T

0
hr-C--' --- (18) 

Finally, the effect of number of stories was investigated. The 
observation indicated that the change in the fundamental natural period 
is approximately proportional to the number of stories 'if' the quantities, 
y, a, 6 and h are kept constant. Thus the final form of the equation to 

--- (12) 



20-5 

predict the fuOdamental natural period was proposed as: 

T
1 
= T0  h

Ns a IT)  

which is the formula shown in Eq. 1. 

CONSIDERATION OF IRREGULAR FRAMES 

Eq. 1 was proposed for the calculation of the fundamental natural 
period of the regular type of frames. If the frame contains shearwalls 
and/or non-rigidly framed members, the quantities defined above must be 
modified if a better prediction is desired. 

(1) Frame Containing Shearwalls  

Such a frame may be represented the the model shown in Fig. 2. Rigid 
stubs simulate the wall width effectkp). In this case the stiffness of the 
beam members attached to the shearwall is calculated using the effective 
length, instead of the column center to center length, L, as used in 
regular type of frames (Eq. 3). Considering the fact that because of the 
forced swayed position, the restraining moments produced by such beams are 
greater than those produced by the ordinary beams of the same length, 
the effective length, L

e
, was defined as: 

L
e 
= 11 - 2 (A1 + a2)} 

 L
--- (19) 

where Al L and A L represent the lengths of the rigid stubs at the left 
and right ends

2
of the beam, respectively. The fundamental natural period 

may then be determined using Eq. 1. 

(2) Frame Containing Pinned End Members  

If a beam is connected to its supporting columns by pinned joints, 
the bending stiffness of this beam is taken as zero. If only one end has 
a pinned connection, the stiffness of the beam may be calculated using 
an effective length, Le, equal to twice the actual length. 

If interior columns have pinned ends as shown in Fig. 3a, these columns 
may completely be ignored. Therefore, the example in Fig. 3a maybe regarded 
as a single bay frame (Nb  = 1 is assumed in Eqs. 3 and 4). The beam stiffness 
based on the average moment of inertia of the left and right beams with the 
length of beam equal to the total of the two beam lengths. 

If exterior columns have pinned ends as shown in Fig. 3b, the example 
is again considered as a single bay frame (Nb  = 1 in Eq. 4). The average 
beam stiffness, Kb, is calculated as: 

K
b 

=[ E /El 
l --)b+ E (I) ] 

A sNb  

for all beams for all beams a --- (20) 
in regular bays in special bays 

in which a special bay is the exterior bay where the exterior ends of 

11

the beams are pinned. Regular bays are all other bays. The effective 
beam lengths, L , in special bays are taken as twice the actual beam 
lengths. In geheral, NI, is the number of bays which is equal to the 
actual number of bays minus the number of special bays. 



20-6 

EXAMPLES 

(1) Example Calculation on Frame #1 

Dimension and structural properties of Frame #1 are shown in Table 1 
and in Fig. 4. This frame may be regarded as a regular type of frame. 
The calculations proceed as follows: 

EI 
= E (E--) /N,Nk = .197 x 10

6 
kip in. 

b 

L ( ) /Ns(Nb  + 1) = .527 x 106  kip in. 
c 
  

Thus, Y = K
b
/K
c 

= .375 

Then
, 
T
0 

is read from the chart in Fig. la as: T
0 
 = 1.83 sec. 

The average story height is 144", thus h = 144/144 = 1.0. 

The quantity, a, is given by: a = 2Kc  x 10-6.=  1.053 
The average weight per story per column is 95 kips, and Nb  = 4, 
then a is calculated as: 

95 4 + 0.4 - 1.49 n  13. = -. x 
4 

Substituting above values into Eq. 1, the fundamental natural period 
of Frame #1 is calculated as: 

T
1 

= T0
ct  

h lfii . Ns = 1.83 x 1.0 x 1[171g TM-3 
x 
 10 
10 = 2.18 sec. Tu   

The rigorous calculation resulted in T = 2.25 sec., which 
indicates the error in the empirical formu1 is about 3% in this case. 

(2) Example Calculation on Frame #2 

Frame #2 contains a shearwall as well as exterior columns whose 1 

ends are pin connected. Dimensions and necessary properties are shown 
in Fig. 5 and Table 2. The empirical formula is used to estimate the 
fundamental natural period in the following manner. 1 

K
b

E ,EI\ 
kr-) E / N

s
N
b 

EI 

left bay e b right bay
L
e 

= (2.65 + 1.33) x 106/10 x 1 = .398 x 106  kip in. 

In the above, the effective length, L , for the beams in the left hand 
bay is taken, according to Eq. 19, as? Le  = 360 - 2 x 60 = 240 inches, 

and for the beams in the right hand bay: Le  = 2 x (360 - 2 x 60) = 480 

inches. Now, K
c

E (I) / Ns(Nb  + 1) = 4.736 x 106  kip in. 
c 

t‘r  

Then, To  is read from the chart in Fig. lb as: To  = 3.34 sec. 

The quantiy, a, is given by: a = 2K
c 
 x 10-6  = 9.47 

K
b 

K
c 

Thus, Y = 
K
b = .398 = .084 

K
c

4.736 
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The average weight per story per column is 87 kips and Nb  = 1, therefore: 

87 1 0.4  
= 70 • 1

- 1.74 

The average story height is 144", thus: h = 1.0 
Substituting these values into Eq. 1, the fundamental natural period 
of Frame #2 is calculated as: 

T
1
= T

0  h
Ns 

et 
. Tu 

74 . 1 10 
= 3.34 x 1.0

9
x IT  =1.43 sec. 

.47 
The rigorous calculation indicated a natural period of 1.54 sec. 

The error in the empirical formula when applied to this rather irregular 
type of frame is approximately 7%. 

ACCURACY OF THE PRESENT METHOD 

The proposed formula, Eq. 1, has been tested on many regular 
type of frames as well as some irregular type of frames. Some of 
them are shown in Table 3, as well as in Fig. 6. Example frames listed 
here include 5 frames used by Goel(3), 4 frames by Blume(1), 1 frame 
by Lionberger and Weaverl5), 1 fraTe by Newmark and Rosenbluethl9), 
and 11 frames by Suko and Adams(14). The frames tested ranged from 2 
to 40 stories and 1 to 4 bays. The deviation from the rigorously 
calculated value is found to be less than 5% in most cases. 
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TABLE 1. STRUCTURAL PROPERTIES OF FRAME #1 

Story 
or 

Floor 

Weight per Floor 

kips (tons) 

Moment of Inertia, 

inch
4

(centimeter
4) 

Columna Beam 
 

1 250 (113) 1200 (49800) 2000 (83100) 
2 500 (226) 1200 (49800) 2000 (83100) 
3 500 (226) 1200 (49800) 2000 (83100) 
4 500 (226) 2200 (91500) 2000 (83100) 
5 500 (226) 2200 (91500) 2000 (83100) 
6 500 (226) 2200 (91500) 2000 (83100) 
7 500 (226) 3300 (137000) 2000 (83100) 
8 500 (226) 3300 (137000) 2000 (83100) 
9 500 (226) 4400 (183000) 2000 (83100) 
10 500 (226) 4400 (183000) 2000 (83100) 

• 

a) Same for all columns within a story. 
b) Same for all beams within a floor 

E (Modulus of Elacity) taken as 29600 kip/in2  (2080 ton/cm
2
) 

TABLE 2. STRUCTURAL PROPERTIES OF FRAME #2 

Story 
or 

Floor 

Weight per Floor 

kips (tons) 

EI (Modulus of Elasticity x Moment of Inertia) 

kip in
2

(ton cm
2
) 

Column Shearwall Beam 
 

1 120 (54.2) 71 (208) 568 (1660) 44 (129) 
2 180 (81.4) 71 (208) 568 (1660) 44 (129) 
3 180 (81.4) 71 (208) 568 (1660) 44 (129) 
4 180 (81.4) 130 (380) 1042 (3045) 59 (173) 
5 180 (81.4) 130 (380) 1042 (3045) 59 (173) 
6 180 (81.4) 130 (380) 1042 (3045) 59 (173) 
7 180 (81.4) 195 (570) 1563 (4560) 74 (216) 
8 180 (81.4) 195 (570) 1563 (4560) 74 (216) 
9 180 (81.4) 261 (761) 2084 (6095) 89 (259) 
10 180 (81.4) 261 (761) 2084 (6095) 89 (259) 

a) Same for the left and right beams within a floor. 
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TABLE 3. COMPARISON OF THE NATURAL PERIODS BY THE PRESENT 
METHOD WITH THOSE BY THE RIGOROUS CALCULATION 

Frame Used By 

Size 
(Story x 
Bay) 

Rigorous 
Calculation 
(Sec.) 

Present 
Method 
(Sec.) Deviation 

Blume 5 x 1 1.53 1.44 .059 
., 10 x 1 2.57 2.51 .023 
,, 
i, 

15 x 1 
20 x 1 

3.43 
4.14 

3.35 
4.17 

.023 

.007 

Goel (taper model) 10 x 1 1.25 1.25 .000 
" (taper model) 25 x 1 2.27 2.29 .009 
" (taper model) 40 x 1 3.00 3.04 .013 

" (uniform model) 10 x 1 1.25 1.25 .000 

" (uniform model) 25 x 1 2.27 2.32 .022 

Lionberger & Weaver 10 x 2 2.18 2.18 .000 

Newmark & Rosenblueth 2 x 1 0.31 0.29 .065 

Suko & Adams 5 x 3 0.54 0.53 .019 
n 5 x 3 0.63 0.61 .032 
I, 
i, 
ii 

5 x 3 
5 x 3 
5 x 4 

0.78 
0.98 
1.17 

0.76 
0.94 
1.15 

.026 

.041 

.017 
ii 10 x 2 1.16 1.18 .017 
H 10 x 2 1.48 1.44 .027 
II 10 x 4 2.25 2.20 .022 

" (with a shearwall) 10 x 2 1.60 1.55 .031 

" (with a shearwall) 10 x 2 2.57 2.53 .016 

" (irregular type) 10 x 2 1.54 1.43 .071 
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Frame with Shearwalls 
Fig. 4 Frame #1 
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Frames with Pinned-End Columns 
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